Autoregulation of blood flow: Vessel diameter changes in response to different temperatures
نویسندگان
چکیده
Autoregulation of blood flow is a marvelous phenomenon balancing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comprehensively. One important aspect of autoregulation phenomenon is temperature changes of the tissue resulted from tissue metabolism. We hypothesize that temperature changes can affect the mechanical properties of the vessel wall leading to vessel diameter changes during autoregulation. Mechanical modeling of vessel diameter changes can also be useful to explain other phenomena in which the vessel diameter changes in response to temperature alterations. Through the mechanical modeling of any vessel, the analysis of temperature-induced changes in vessel diameter can be done more precisely.
منابع مشابه
Autoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures
Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...
متن کاملA Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries
This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملStructural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
-It is widely accepted that the early phase of primary hypertension is characterized by elevated cardiac output, whereas in later stages the increased blood pressure is due to increased peripheral resistance. To study long-term effects of increased blood flow on peripheral resistance, structural adaptation of microvascular networks in response to changes in blood flow was simulated using a prev...
متن کامل